QuietUnrar/Carthage/Checkouts/UnrarKit/Libraries/unrar/sha1.cpp

205 lines
6.2 KiB
C++
Raw Normal View History

#include "rar.hpp"
/*
SHA-1 in C
By Steve Reid <steve@edmweb.com>
100% Public Domain
*/
#ifndef SFX_MODULE
#define SHA1_UNROLL
#endif
/* blk0() and blk() perform the initial expand. */
/* I got the idea of expanding during the round function from SSLeay */
#ifdef LITTLE_ENDIAN
#define blk0(i) (block->l[i] = ByteSwap32(block->l[i]))
#else
#define blk0(i) block->l[i]
#endif
#define blk(i) (block->l[i&15] = rotl32(block->l[(i+13)&15]^block->l[(i+8)&15] \
^block->l[(i+2)&15]^block->l[i&15],1))
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) {z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rotl32(v,5);w=rotl32(w,30);}
#define R1(v,w,x,y,z,i) {z+=((w&(x^y))^y)+blk(i)+0x5A827999+rotl32(v,5);w=rotl32(w,30);}
#define R2(v,w,x,y,z,i) {z+=(w^x^y)+blk(i)+0x6ED9EBA1+rotl32(v,5);w=rotl32(w,30);}
#define R3(v,w,x,y,z,i) {z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rotl32(v,5);w=rotl32(w,30);}
#define R4(v,w,x,y,z,i) {z+=(w^x^y)+blk(i)+0xCA62C1D6+rotl32(v,5);w=rotl32(w,30);}
/* Hash a single 512-bit block. This is the core of the algorithm. */
void SHA1Transform(uint32 state[5], uint32 workspace[16], const byte buffer[64], bool inplace)
{
uint32 a, b, c, d, e;
union CHAR64LONG16
{
unsigned char c[64];
uint32 l[16];
} *block;
if (inplace)
block = (CHAR64LONG16*)buffer;
else
{
block = (CHAR64LONG16*)workspace;
memcpy(block, buffer, 64);
}
/* Copy context->state[] to working vars */
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
#ifdef SHA1_UNROLL
/* 4 rounds of 20 operations each. Loop unrolled. */
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
#else
for (uint I=0;;I+=5)
{
R0(a,b,c,d,e, I+0); if (I==15) break;
R0(e,a,b,c,d, I+1); R0(d,e,a,b,c, I+2);
R0(c,d,e,a,b, I+3); R0(b,c,d,e,a, I+4);
}
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
for (uint I=20;I<=35;I+=5)
{
R2(a,b,c,d,e,I+0); R2(e,a,b,c,d,I+1); R2(d,e,a,b,c,I+2);
R2(c,d,e,a,b,I+3); R2(b,c,d,e,a,I+4);
}
for (uint I=40;I<=55;I+=5)
{
R3(a,b,c,d,e,I+0); R3(e,a,b,c,d,I+1); R3(d,e,a,b,c,I+2);
R3(c,d,e,a,b,I+3); R3(b,c,d,e,a,I+4);
}
for (uint I=60;I<=75;I+=5)
{
R4(a,b,c,d,e,I+0); R4(e,a,b,c,d,I+1); R4(d,e,a,b,c,I+2);
R4(c,d,e,a,b,I+3); R4(b,c,d,e,a,I+4);
}
#endif
/* Add the working vars back into context.state[] */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
}
/* Initialize new context */
void sha1_init(sha1_context* context)
{
context->count = 0;
/* SHA1 initialization constants */
context->state[0] = 0x67452301;
context->state[1] = 0xEFCDAB89;
context->state[2] = 0x98BADCFE;
context->state[3] = 0x10325476;
context->state[4] = 0xC3D2E1F0;
}
/* Run your data through this. */
void sha1_process( sha1_context * context, const unsigned char * data, size_t len)
{
size_t i, j = (size_t)(context->count & 63);
context->count += len;
if ((j + len) > 63)
{
memcpy(context->buffer+j, data, (i = 64-j));
uint32 workspace[16];
SHA1Transform(context->state, workspace, context->buffer, true);
for ( ; i + 63 < len; i += 64)
SHA1Transform(context->state, workspace, data+i, false);
j = 0;
}
else
i = 0;
if (len > i)
memcpy(context->buffer+j, data+i, len - i);
}
void sha1_process_rar29(sha1_context *context, const unsigned char *data, size_t len)
{
size_t i, j = (size_t)(context->count & 63);
context->count += len;
if ((j + len) > 63)
{
memcpy(context->buffer+j, data, (i = 64-j));
uint32 workspace[16];
SHA1Transform(context->state, workspace, context->buffer, true);
for ( ; i + 63 < len; i += 64)
{
SHA1Transform(context->state, workspace, data+i, false);
for (uint k = 0; k < 16; k++)
RawPut4(workspace[k],(void*)(data+i+k*4));
}
j = 0;
}
else
i = 0;
if (len > i)
memcpy(context->buffer+j, data+i, len - i);
}
/* Add padding and return the message digest. */
void sha1_done( sha1_context* context, uint32 digest[5])
{
uint32 workspace[16];
uint64 BitLength = context->count * 8;
uint BufPos = (uint)context->count & 0x3f;
context->buffer[BufPos++] = 0x80; // Padding the message with "1" bit.
if (BufPos!=56) // We need 56 bytes block followed by 8 byte length.
{
if (BufPos>56)
{
while (BufPos<64)
context->buffer[BufPos++] = 0;
BufPos=0;
}
if (BufPos==0)
SHA1Transform(context->state, workspace, context->buffer, true);
memset(context->buffer+BufPos,0,56-BufPos);
}
RawPutBE4((uint32)(BitLength>>32), context->buffer + 56);
RawPutBE4((uint32)(BitLength), context->buffer + 60);
SHA1Transform(context->state, workspace, context->buffer, true);
for (uint i = 0; i < 5; i++)
digest[i] = context->state[i];
/* Wipe variables */
sha1_init(context);
}